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Grid Computing

I Vision: Applications programs plugs into a software
environment to draw computational power from a dynamically
changing pool of resources (Foster, Kesselman, et al, 1998).

I Electrical Power Grid analogy:
I Power generation facilities
I Household appliance
I Scale to national and international levels

I Federated System:
I Grid users (both power producers and applications consumers)

must be able to join and leave the Grid at will
I Local control supersedes global control
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The Dark Side of Grid Computing

I Heterogeneity
I Machines, networks, software, administrative policies all vary
I and electrons are not created equals (CPU cycles, memory and

storage space, connectivity)

I Dynamism
I Loads, performance and availability change with time

I Programmability
I Complex and dynamically changing system

I Security

I Maintainability



Observing Resources in the Wild

Stormy Weather

I Problem: How can programs extract high performance levels
given the resource pool is heterogeneous and dynamically
changing?

I Applications and/or systems must be able to tolerate or mask
fluctuating performance of federated grid resources

I Idea: Predict future performance levels and adapt applications
to the predictions on the fly

I Predictions must be at the application level
I Predictions must be made on-line to avoid staleness
I Delivery of predictions must be fast

I A Solution: The Network Weather Service



Outline

The Network Weather Service

Lesson I: Services vs Tools

Lesson II: Don’t Believe Everything You Read

Lesson III: Predict or Waste

Lesson IV: Real Systems Can Be Predicted
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Challenges in Monitoring the Grid

I The monitoring system has to be itself a Grid application.
I Problem: need to take measurements constantly

I No way to know when the user will make a query
I Models become stale very quickly
I Previous history improves accuracy of predictions

I Mort information systems are optimized for query and not
update (high frequency dynamics are common)

I The System needs to be:
I Non-Intrusive: need to control the perturbation on the

monitored resources
I Fast: needs to gather and forecast data from all resources all

the time
I Robust: if the scheduler can’t see the resource, it can’t use it
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The Network Weather Service

I A distributed, robust and adaptive system that
I monitors the performance that is available from distributed

resources
I forecasts future performance levels using fast statistical

techniques
I delivers forecasts on-the-fly to applications and resource

allocators (Globus, Condor, Legion, NetSolve, NINF etc. . . )

I Portable and extensible

I Works at the application level and end-to-end
I Structure the system exploits the delay between data

generation and query:
I Sensors write into local, distributed repositories
I Proxy caches asynchronously pull the data close to the user
I User forecasting to filter the effects of inconsistent best effort

world view
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Logical Architecture
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End-to-end Network Measurement
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Lesson I: Services vs Tools

I There are a lot of tools: iperf, netperf, pathload, nttcp, ping
I They are simpler (they monitor only one thing)
I They are better known (Iperf is the most accurate end-to-end

performance monitoring tool.)
I Not designed to gather data continuosly: timeout is ctrl-C
I Each user runs a separate instance:

I 23% of the traffic going across Abilene is measuring network
performance

I Network Weather Service:
I Allows to tailor the reports per application (cliques are user

defined)
I Measures multiple resources of the same node (ie CPU might

be useless without memory)
I Give fresh forecasts of future usage of resources
I Designed for unattended operations:

I adaptive timeouts
I handles network partitions
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Best of Breeds

Comparison of Network Measurement Tools
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Lesson II: Seeing is Not Always Believing

I Measuring seems easy, but knowing what is being measured is
hard:

I Operating systems lie
I What does load average mean
I Can Linux really make time go backwards?

I Network measurements measure the network and not what it
delivers:

I Pathload, pchar, pathchar measure “capacity”

I Measuring is fun so everybody build a measurement tool: there
is much lore

I Measurement error?



Observing Resources in the Wild

What Does Unix Load Average Measure?

CPU Occupancy: Reported and Observed
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Lesson III:One Size Does Not Fit All

I GridFTP can use parallel TCP sockets for data transfer
I Useful for clean networks with high bandwidth-delay products
I Several other tools have followed suit

I IBP streaming downloads:
I Segmented streaming media download protocol
I Fetches replicated segments in parallel
I Used a deadline-oriented progress metric to increase parallel

fetches of late segments
I “No Need for forecasting!”
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Same Robustness Better Performance

General Progress-driven and NWS Adaptive Timeout Discovery
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Lesson IV: Real Systems Can Be Predicted

I Can we predict machine availability with quantifiable error?
I UCSB Instructional Computing Labs (6 months)

I Approximately 85 machines running Red Hat Linux locate in
three separate buildings

I Open to all Computer Science graduate and undergraduate
(approximately 800 users)

I Power switch is not protected: Students routinely clean off
competing users or intrusive processes to gain better
performance response

I Condor Pool at University of Wisconsin (6 months)
I Idle cycle harvesting system
I Machine owners specify what idle and busy mean
I Approximately 2000 machines

I Darrell Long Internet Study (3 months, 1995)
I pings rstat daemon
I Approximately 1200 hosts
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Predictions and Confidence

I For Scheduling, predict the quantile for each machine: For at
least how long will a given machine be available with
95% confidence?

I Requires two estimates:
I Estimate the 0.05 quantile, call it Q0.05 P(x >= Q0.05) = .95
I Estimate the 95% confidence interval on Q0.05

I At least 95 times out of 100 the availability should be bigger
than lower confidence bound of Q0.05
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An Example: UCSB

MLE Fit Bounds
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Accurate Predictions and Confidence Values

Data Set Weibull Method Resample Method Binomial Method

CSIL 56.25% 62.5% 87.5%

Condor 95.92% 60.2% 98.9%

Long 57.95% 53.4% 94.3%

I First 20 measurements of each trace use to predict remaining
data values

I Picked random future values and recorded the number of time
each is successful

I Total correct hit rate for Binomial method is 96.5%
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Lessons From the Wild

I A Service and not a Tool:
I if long-running, robust measurements are needed, simple

end-to-end tools are the wrong solution

I Measurements looks easy but understanding measurement is
hard:

I systems should consider measurement error
I measurements should be taken at the application level

I Don’t believe the lore:
I be adaptable to recognize the different condition and react

accordingly

I Good predictions are possible
I key is to be able to quantify error and confidence
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Appendix
Time To Port Matters
Knowing What To Measure And Defaults vs Documentation
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Needs to Run EveryWare

I EveryWare at SC98: The first program to use all of the extant
Grid infrastructure at the same time.

I The first program to couple the Tera and the NT Supercluster
with a web browser in a coffee shop.

I The first true Computational Grid program in the visionary
sense of the words:

I cycles are commodities
I dynamically adaptive and robust
I completely non dedicated-access

I Portable and easily extensible framework into which
applications can be plugged in
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The New Resource (Tera MTA) is the Fastest

Here, There, and
EveryWare
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The Nice Guy

I Original NWS default experiment size was 64K bytes (ISDN
and 10Mb Ethernet were still in wide use when NWS 1.0 was
coded) but the experiment size (and the buffer size and the
single message size) is user configurable

I Notable colleagues published a paper containing the following
quote: Although tools such as the Network Weather Service
(NWS) measure and predict network bandwidth, a substantial
difference in performance can arise between a small NWS
probe (lightweight with 64KB size) and an actual file transfer
using GridFTP (with tuned TCP buffers and parallelism).

I Several groups have contacted us complaining about the
inability to use large probes
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Small Probes Carry Lots of Information

Mean Normalized Prediction Error for
16MB HTTP 
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